Scattering Matrices and Scattering Geodesics of Locally Symmetric Spaces
نویسنده
چکیده
Let Γ\X be a Q-rank one locally symmetric space. We describe the frequencies of oscillation of scattering matrices on Γ\X in the energy variable in terms of sojourn times of scattering geodesics. Scattering geodesics are the geodesics which move to infinity in both directions and are distance minimizing near both infinities. The sojourn time of a scattering geodesic is the time it spends in a fixed compact region. The frequencies of oscillation come from the singularities of the Fourier transforms of scattering matrices and we show that these occur at sojourn times of scattering geodesics on the locally symmetric space. This generalizes a result of Guillemin obtained in the case of finite volume non-compact Riemann surfaces. Résumé. Soit Γ\X un espace localement symétrique de rang 1 sur Q. Nous décrivons les fréquences d’oscillations de la matrice de scattering de Γ\X dans les variables d’énergie. Définissons pour cela les géodésiques de scattering de l’espace localement symétrique comme les gódésiques atteignant l’infini à leurs deux extrémités, et qui sont minimisantes au voisinage de l’infini. Appelons temps de séjour d’une telle géodésique le temps qu’elle passe dans un domaine compact fixé. Nous prouvons que les singularités de la tranformée de Fourier (relativement au paramétre d’énergie) de la matrice de scattering sont contenues dans l’ensemble des temps de séjour, et décrivons la nature de ces singularités. Cela généralise un résultat de Guillemin obtenu dans le cas des surfaces de Riemann non compactes de volume fini.
منابع مشابه
Correction and Supplements to “scattering Matrices and Scattering Geodesics of Locally Symmetric Spaces”
– This note corrects and complements our paper entitled “Scattering matrices and scattering geodesics of locally symmetric spaces” (Ann. Sci. Éc. Norm. Sup. 34 (2001) 441–469). 2002 Éditions scientifiques et médicales Elsevier SAS RÉSUMÉ. – Nous apportons des corrections et des compléments à notre article intitulé “Scattering matrices and scattering geodesics of locally symmetric spaces” paru...
متن کاملConnecting Geodesics and Security of Configurations in Compact Locally Symmetric Spaces
A pair of points in a riemannian manifold makes a secure configuration if the totality of geodesics connecting them can be blocked by a finite set. The manifold is secure if every configuration is secure. We investigate the security of compact, locally symmetric spaces.
متن کاملEquivariant Torsion of Locally Symmetric Spaces
In this paper we express the equivariant torsion of an Hermitian locally symmetric space in terms of geometrical data from closed geodesics and their Poincaré maps. For a Hermitian locally symmetric space Y and a holomorphic isometry g we define a zeta function Z(s) for <(s) 0, whose definition involves closed geodesics and their Poincaré maps. We show that Z extends meromorphically to the enti...
متن کاملHermitian symplectic geometry and extension theory ∗
Here we give brief account of hermitian symplectic spaces, showing that they are intimately connected to symmetric as well as self-adjoint extensions of a symmetric operator. Furthermore we find an explicit parameterisation of the Lagrange Grassmannian in terms of the unitary matrices U(n). This allows us to explicitly describe all self-adjoint boundary conditions for the Schrödinger operator o...
متن کاملBoundary scattering in the SU(N) principal chiral model on the half-line with conjugating boundary conditions
We investigate the SU(N) Principal Chiral Model on a half-line with a particular set of boundary conditions (BCs). In previous work these BCs have been shown to correspond to boundary scattering matrices (K-matrices) which are representation conjugating and whose matrix structure corresponds to one of the symmetric spaces SU(N)/SO(N) or SU(N)/Sp(N). Starting from the bulk particle spectrum and ...
متن کامل